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Abstract: The challenges of modern complicated systems regarding their design, analysis, and management are put 
in a historical context to better propose a framework for the future involving complementary uses of testing, 
modeling, and performance functions. 
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1. Introduction 
 
As scientists and engineers involved with complex 

and dynamic systems, we are at an important point in 
intellectual history, and we thus have a special 
responsibility to society. The unusual behavior of 
complicated engineered systems – with their attendant 
potential benefits and dangers – have been 
foreshadowed and anticipated for some time. 
Examples include solitary wave phenomena (e.g., 
Kortwieg de Vries and sine-Gordon models); 
hyper-sensitivity to initial conditions (e.g., weather 
models); nonlinear behavior of many-body simulations 
(e.g., Monte Carlo and cellular automata); and, more 
recently, system approaches to biological and earth 
sciences. 
Closer to the public, over time we have built systems, 

such as energy, information, financial, communication, 
and physical infrastructure networks, with relatively 
simple component behaviors which in connection and 
interdependence with other elements have become 
complex systems capable of exhibiting unexpected 
phenomena and vulnerabilities to perturbations. A 
recent example is the failure of the Northeast American 
power grid in mid-August, 2003, followed a couple of 
weeks later by the blackout of Italy. These power 
management systems were developed with hardware, 
software, and human operator components each 
well-understood using traditional engineering practices. 
But their collective behavior and failure, in the 
American instance cited, are not understood to date 

despite the focused efforts of the best experts in the 
field. Failures of complex systems on which society 
has come to depend may be the difference between 
light and dark, or even life and death. 
However, we don’t need just large, extensive network 

systems to appreciate the problems and challenges we 
will face in this century regarding the design, analysis, 
and management of complex and dynamic systems. 
Smaller, more focused, semi-automatic or robotic 
systems also present laboratories for the investigation 
of complicated processes which typically involve a 
mixture of machine, software, and human factors. I will 
use my experience with the risk analysis of a 
semi-robotic medical radiation treatment device, the 
Gamma Knife, to illustrate the potential roles of 
measurement, simulation, and performance objectives 
in managing complex and dynamic systems in the 
future. 
We now must rapidly learn to deal with such 

complicated systems, because they are becoming 
prevalent in our societies and present practical 
problems. Happily, we have available techniques and 
tools, especially computational capabilities, to aid us. 
We also need paradigms or frameworks for thinking 
anew about systems in an increasingly nonlinear world. 
This paper suggests a path forward based on 
complementary uses of system measurement, 
simulation, and performance functions. 
 
 

2. Systems Analysis and 
Measurement 
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  In order to foresee complex systems analysis, it is 
useful to put our predicament in an historical 
perspective. Since the beginning of the Age of Reason, 
Western thinkers have struggled with the respective 
roles and dilemmas associated with determinism and 
uncertainty. By the early 1800’s, a synthesis of these 
ideas was obtained, as embodied in the work of 
Laplace.1,2  Laplace’s astronomical work was a 
completely mechanical explanation of the solar system 
based on Newtonian principles, i.e., it was the 
deterministic ‘celestial mechanics’. However, 
astronomical measurements have discrepancies or 
errors among them, and it is problematic to know 
which result is the usable one. The solution to this 
problem was the ‘law of errors’ (i.e., errors are 
normally distributed such that the deviation from the 
mean is as predictable as the mean itself as a function 
of the number of observations) which arose out of two 
closely related ideas: probability theory, which sought 
to understand chance events, and statistics which 
sought to measure fluctuating phenomena. Laplace 
was explicit about the probabilistic nature of statistical 
calculations: we can never know with absolute 
certainty; we can only know with greater or lesser 
degrees of probability. With the ‘law of errors’, 
statistics and probability theory allowed scientists to 
achieve far greater degrees of precision then they had 
imagined possible. 

In general, the concepts of that era have propagated 
forth to inform systems thinking today. They are 
embedded in powerful conventional constructs of 
analysis: linear causality, precision certainty, 
reversibility, reductionism, and induction/deduction. 
Unfortunately, some or all of these concepts may not 
apply to evaluations of the complicated phenomena of 
modern complex and dynamic systems.  

For instance, statistics can conquer uncertainty, but 
statistics needs proper measurements or tests to be 
made. Proper measurement involves the assumption 
that a piece of the system can be partitioned and 
isolated to be measured; the component measurement 
is independent of the other parts of the system; and the 
results can be placed back in the aggregated system 
without prejudice. This is a lot to take for granted with 
modern systems, which typically contain hardware, 
software, and human elements coupled together. To 

illustrate this, Fig. 1 summarizes the nature of errors or 
failures for such components. 
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Fig. 1. Nature of errors or failures associated with 
system components. 
 

We are familiar with hardware or machine failures, 
where the failures are random but their rates can be 
determined through statistically rigorous testing 
regimes. All software errors are pre-determined – they 
are encoded – but their occurrence depends on a 
conspiracy of circumstance which may not be 
anticipated by stochastic sampling. Unintentional 
human errors occur for both mechanistic and random 
reasons and can, in principle, have rates established 
through statistical tests; but all relevant conditions or 
environments may not be available. Intentional human 
acts, such as criminal or terrorist acts, are neither 
deterministic nor random and hence beg the use of 
probability. These error problems are compounded 
when different components interact in unexpected 
ways. So, in a complicated system the value of 
measurement is conditional. 

We had to deal with such problems for a risk-based 
evaluation of the Gamma Knife semi-robotic medical 
device.3  Decomposing or partitioning of the system 
process into steps was aided by the linear process 
procedure from lesion identification, treatment 
planning, pre-treatment setup, to treatment. But each 
step contained a mix of hardware, software, and human 
activities and potential failure modes for which very 
little information was available (the Gamma Knife was 
a new device that had been used for a limited number 
of treatments and had few failures). Statistical samples 
with confidence levels for failures during each step 
were out of the question, and we thus used qualitative 
probability distributions constructed from sparse 
manufacturer, operational, anecdotal, and expert 
information. The data were compared in a risk profiling 



method that allowed us to compare the relative risk 
(based on mean values) of each process step, 
independent of the other steps. This provided a first 
order view of where important risk may lie in the 
performance of the system. 

The bottom line of this discussion is that reductions 
for measurement or testing of a complex system are not 
adequate: they only provide an incomplete 
representation of the system’s real state-of-affairs. 
Other aspects of system analysis are needed. 

 
 

3. System Simulations 
 

Another way to represent the behavior of a system is 
through modeling or simulation. This, of course, 
requires another type of abstraction, and partial view, of 
the complex system involving a choice of mechanisms 
to model and preferences for the generation of certain 
types of system data or behaviors. But the coordination 
of the nature of the simulations with the system features 
testing and measurement capabilities can lead to a 
more faithful representation of the system as a whole. 
Computer simulations are a powerful way of gaining 
insight into complex system processes and are 
substantially aided by modern developments in 
high-performance computing, visualization tools, and 
the rise of interdisciplinary research. 

System simulations can be profitably used in 
different ways. One approach is to look at many 
solutions at once to develop a sophisticated 
understanding of the global structure of an ensemble of 
system solutions with respect to its underlying 
mechanisms. This may entail looking for specific 
patterns in the system performance data; or using the 
‘geometry’ of the solutions to guide optimal 
performance strategies against several competing 
constraints. This approach is used in planning 
spacecraft trajectories in celestial mechanics; and in 
some forms of weather prediction. Another application 
is sensitivity studies where fluctuations or perturbations 
are introduced to study oscillations or limit cycles of 
the system, from which it is possible to design 
strategies that ensure stable operation. Example arenas 
are manufacturing processes and transportation 
networks. The computer modeling may be direct, in the 
sense of starting from basic mechanisms to develop 
system states-of-affairs or outcomes. On the other hand, 

as demonstrated by Lawrence Livermore fusion 
scientists, codes can be developed where the 
performance outcomes are provided as inputs, and the 
optimal system design to meet those requirements is 
generated. 

In the case of the Gamma Knife study, sequential 
Monte Carlo simulations were employed to generate a 
multitude of treatment scenarios in order to explore the 
risk space of the system. The system process steps each 
had qualitative (using relative scales) probability 
distributions for both equipment and human errors or 
failures and also distributions for the magnitudes of the 
errors. A Monte Carlo sampling technique was applied 
to each step distribution to determine if an error 
occurred in that step, and if so, what was its sampled 
magnitude; and then the errors were aggregated 
probabilistically using the logical relations among the 
system components. Thus, for each scenario the 
aggregate likelihood of error and its magnitude (i.e., its 
consequence) was recorded along with the risk 
contributors. Through 100,000 such simulations to 
reach convergence, a picture of the distribution of risks 
emerged along with the identification of the most 
significant contributors to the highest risks. The results 
of these simulations revealed different significant risk 
contributors than the relative point risk estimates 
mentioned in the previous section. This was due to the 
unexpected conspiracy effects of the interactions 
among process events, especially with respect to the 
tails of their distributions. In other word, the shape of 
the distributions turned out to be more important then 
their mean values, through nonlinear interactions 
which were only realized upon simulation. These 
effects were later validated by real events. 

As mentioned above, the important science and art of 
complex systems analysis is to coordinate both system 
testing and simulation to achieve a more robust 
understanding and management of the system. 
Simulation can help direct what system features should 
be measured and to what extent; and, of course, system 
testing/measurement will inform the desired 
characteristics of the simulation model. The desirable 
goal is to achieve a high level of correlation among 
measurements, simulations, and phenomenological 
performance figures-of-merit. For complex systems, 
we probably cannot disentangle the nature of the 
correlations between deterministic and stochastic 
effects; but having confidence in the correlations 



themselves is extremely valuable regardless of their 
pedigree. 

 
 

4. Bounding System Performance 
 

The third complementary aspect, in addition to 
measurement and simulation, needed for complex 
system evaluation and management is realistic 
performance bounds and associated figures-of-merit 
for system performance. Dynamic systems become 
problems when certain behaviors become unbounded 
or far exceed expected limits, and these can be 
facilitated if appropriate performance objectives are not 
employed and integrated with the design or analysis 
from the beginning. As an analogy, if nutrients and 
space are unlimited, bacteria will divide steadily and 
increase exponentially. But if resources are limited, the 
bacteria proliferation rate will drop or the death rate 
will increase, and the population will stabilize. 
Similarly, the scientist and engineer need to establish 
and impose limits for their systems, to ensure that 
unwanted system excursions do not occur. These can 
be used to coordinate the measurement and simulation 
activities for system analysis, so that the correlated 
representation of the system maps into performance 
figures-of-merit, and vice versa, to aid system control 
and management. 

One useful approach to bounding system behavior is 
to delimit the risks, between residual risk of little or no 
interest and unacceptable risk; and to delimit 
performance, for example, between desirable 
performance objectives, such as throughput or 
maintainability, and available resources or options 
(money, equipment, people, etc.) which are always 
limited. One way to represent these bounds is in a 
risk-based framework as illustrated in Fig. 2. 

The aim of the establishment of risk goals is to define 
the regions of prudent or acceptable risks, thus 
allowing systems to operate within them to maximize 
their benefits or utilities as resources and performance 
characteristics will permit. These risk goals should 
have both consequence and likelihood dimensions.  
Two limits are needed for the likelihood bounds: a 
‘screening’ frequency below which the unwanted high 
consequence incident likelihood is considered 
negligible; and a ‘target’ frequency above which events 
for lower levels of consequence can not be allowed to 

occur. Thus, for each risk goal the states of the system 
are managed (by the available options) such that the 
likelihood for any consequence is between the 
screening and target limits. 
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Fig. 2. Risk space defined and partitioned among 
screening (fs) and target (ft) frequencies and regions 
of Mutually Acceptable Equilibrium (MAE), 
Conservatively Permissible Risk (CPR), and 
Emergency Response (ER). 
 

The region of ‘mutually acceptable equilibrium’ 
(MAE) refers to common system scenarios and events 
that occur at frequencies high enough to make them 
statistically observable, but the consequences tend to be 
small. The statistics for MAE events allow a 
management balance which is continuously fine-tuned 
and has ‘preventive’ qualities. Scenarios from this 
region might escalate into the region of ‘conservatively 
permissible risk’ (CPR) where scenarios and events are 
highly improbable (beyond the design basis) but the 
consequences may be severe. Such system endpoints 
need to be examined to determine what design 
mechanisms or barriers are required so that their 
likelihood is limited. For CPR scenarios, if they occur, 
there needs to be mitigative management options. 
Emergency response is invoked if mitigation fails. The 
sequence of preventive, mitigative, and emergency 
response management constitute a defense-in-depth 
against runaway system behavior. Of course, one 
always wants to move the risks, by cost effective 
system design changes or management practices, from 
higher to lower risk regions. 

The risk goals, management options, and other 
objectives and constraints bound the complex system 
evaluation problem. They provide the endpoints of 



interest to scenarios and serve to reach problem closure 
by providing a quantitative feel for the magnitude of 
the risks relative to the various management strategies. 

In the case of the Gamma Knife study, system 
component measurements were used in Monte Carlo 
simulations of a multitude of scenarios to delineate the 
risk space for the Gamma Knife system. The results 
indicated a relatively large population of scenarios in 
high risk regions, which exceeded desirable risk goals.  
Inspection of these scenarios identified certain process 
tasks that are significant risk contributors. By making 
changes in procedures and design features associated 
with these tasks, subsequent simulations indicated a 
substantial reduction in potential high risk scenarios. In 
terms of the discussion above, these methods 
exemplified how scenarios in the CPR regime could be 
moved to the MAE regime through system feature 
changes. 
 
 

5. Summary 
 

We are faced with managing emerging complex and 
dynamic systems in our societies, which we depend on 
for our well-being, safety, and security. Their mixed 
attributes of mechanics, software, and human factors 
give rise to complications and issues heretofore 
unaddressed in the history of system analysis. We may 
not be able to depend on traditional and reliable 
concepts such as reductionism or induction or even 
direct causality, and yet we must proceed. 

This paper has suggested that a science-based risk 
approach framework for analyzing, designing, and 
managing our complex systems entails a triad of 
complementary functions: measurement or testing, 
modeling or simulation, and risk-based objectives to 
bound performance. Probabilistic techniques play a 
fundamental role in combining and mapping 
information among these functions. Each function is 
inadequate in itself; but they can work together, 
synergistically, to help understand complex system 
behavior. This has been demonstrated in the case of the 
semi-robotic medical treatment device, the Gamma 
Knife. While the applications of these methods are 
contingent on the particular system of interest; the 
collection of principles they represent may be more 
universally applicable. 
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